.. CISPA Machine Learning in Cybersecurity documentation master file, created by sphinx-quickstart on Wed Oct 8 17:26:56 2025. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. CISPA Machine Learning in Cybersecurity tutorials ================================================= πŸ“˜ Course Information ===================== | **Course website:** `Course website `_ | **Course edition:** Winter term 2025/2026 (Oct 13 – Feb 06) | **Recordings:** Will follow | **Instructor:** Christoph R. Landolt --- βš™οΈ How to Run the Notebooks =========================== The website hosts HTML-exported versions of the notebooks for convenient reading on any device. However, we encourage you to run them yourself to gain hands-on experience. You can do this in three main ways: πŸ–₯️ Run Locally (CPU) -------------------- All notebooks are available in this GitHub repository. You can also find them here: πŸ‘‰ `GitHub repository `_ - Designed to run on standard laptops (no GPU required). ☁️ Google Colab --------------- Prefer to use a hosted environment or want GPU support? Use [Google Colab](https://colab.research.google.com/notebooks/intro.ipynb#recent=true). - Each notebook includes a β€œRun in Colab” badge on the documentation website. - Enable GPU support via: `Runtime β†’ Change runtime type β†’ GPU`. --- 🧭 Tutorial Lessons =================== The **Exercise Schedule** (below) lists the practical/tutorial sessions associated with the course tutorials. The sessions will take place in **CISPA Lecture Hall, Stuhlsatzenhaus 5**. .. raw:: html

Change of Location for the First Tutorial – Now in E1 3, Lecture Hall HS002

+------------+------------+------------------------------------------------+ | **Date** | **Time** | **Topic** | +============+============+================================================+ | 29.10.2025 | 16:15-17:45| Tutorial: ML Basics / Setup | +------------+------------+------------------------------------------------+ | 05.11.2025 | 16:15-17:45| Q&A: ML Basics | +------------+------------+------------------------------------------------+ | 12.11.2025 | 16:15-17:45| Introduction Ex1: Train ML IDS | +------------+------------+------------------------------------------------+ | 03.12.2025 | 16:15-17:45| Ex1 Review: Train ML IDS | +------------+------------+------------------------------------------------+ | 10.12.2025 | 16:15-17:45| Introduction Ex2: Evade ML IDS | +------------+------------+------------------------------------------------+ | 07.01.2026 | 16:15-17:45| Ex2 Review: Evade ML IDS | +------------+------------+------------------------------------------------+ | 14.01.2026 | 16:15-17:45| Introduction Ex3: AI for CTF | +------------+------------+------------------------------------------------+ | 04.02.2026 | 16:15-17:45| Ex3 Review: AI for CTF | +------------+------------+------------------------------------------------+ πŸ“¬ **Submit your questions** [**here**](https://forms.gle/enzD3i6yjbAFJaya6) β€” review sessions will be organized based on your questions and feedback. --- πŸ’¬ Feedback, Questions, or Contributions ======================================== This is the first edition of the **Machine Learning in Cybersecurity** tutorials. We appreciate all feedback β€” whether it’s a typo, a bug, or a suggestion for improvement. If you discover a **mistake or issue in a notebook**, please [open a GitHub issue](../../issues) so we can track and resolve it publicly. You can also reach out directly via email (`christoph dot landolt at cispa dot de`), or speak to us during a exercise session. If you find the tutorials helpful, please cite this course as: .. code-block:: bibtex @misc{landolt2025_mlcysec, title = {CISPA Machine Learning in Cybersecurity}, author = {Christoph R. Landolt and Mario Fritz}, year = {2025}, howpublished = {\url{https://christophlandolt.com/mlcysec_notebooks/}}, } .. toctree:: :maxdepth: 2 :caption: Tutorial 1: Getting started: tutorial_notebooks/getting_started_with_jupyter_and_python/getting_started_with_jupyter_and_python tutorial_notebooks/discover_visualize_gain_insights/discover_visualize_gain_insights tutorial_notebooks/getting_started_with_ml/getting_started_with_ml tutorial_notebooks/getting_started_with_deep_learning/getting_started_with_deep_learning .. toctree:: :maxdepth: 2 :caption: Tutorial 2: Intrusion Detection: tutorial_notebooks/tutorial2_anomaly_detection/tutorial2_anomaly_detection tutorial_notebooks/tutorial2_3_analyzing_application-layer_protocols/tutorial2_3_analyzing_application-layer_protocols .. toctree:: :maxdepth: 2 :caption: Tutorial 3: Evading ML-IDS: .. toctree:: :maxdepth: 2 :caption: Tutorial 4: ML in the hands of Attackers (CTF):